79. The stage in the production of sulfuric acid, accompanied by the formation of largetonnage waste - cinder is:

A) absorption of gases and dust;

B) drying of sulfur dioxide;

C) absorption of sulfuric anhydride;

D) firing of pyrite;

E) oxidation of SO_2 to SO_3 .

80. Stage in the production of sulfuric acid, accompanied by the formation of poor and rich selenium sludge:

A) firing of pyrite;

B) dry gas cleaning;

C) wet gas cleaning;

D) cooling the acid;

E) oxidation of SO_2 to SO_3 .

81. When cleaning the roasting gas from the spray and mist of sulfuric acid on wet electrofilters, selenium sludge containing selenium is released, %:

A) up to 50;B) up to 15;C) up to 25;D) up to 35;E) up to 45.

82. To which compound does selenium go when firing pyrites:

A) SeO₂; B) SeCl₄; C) H₂SeO₃; D) H₂SeO₄; E) H₂Se.

83. Neutralization of wastewater in sulfuric acid production is carried out:

A) persulphuric acid;

B) potash, salt;

C) alumina, coal;

D) lime, soda;

E) chalk.

84. Neutralization wastewater treatment using lime in sulfuric acid production proceeds according to the reaction:

A) $Na_2CO_3 + H_2SO_4 = Na_2SO_4 + H_2O + CO;$ B) $NaCl + 2C + H_2SO_4 = 2HCl + Na_2S + 2CO_2;$ C) $CaO + H_2O + H_2SO_4 = CaSO_4 + 2H_2O;$ D) $K_2CO_3 + H_2SO_4 = K_2SO_4 + H_2O + CO;$ E) $2NH_3 + H_2SO_4 = (NH_4)_2SO_4.$ 85. For preparation of 100 ml of 1 M solution of H_2SO_4 acid (g) is required: A) 9.8;B) 980;C) 0.098;D) 4.9;

E) 0.98.